1,407 research outputs found

    Cassini Ring Seismology as a Probe of Saturn's Interior I: Rigid Rotation

    Full text link
    Seismology of the gas giants holds the potential to resolve long-standing questions about their internal structure and rotation state. We construct a family of Saturn interior models constrained by the gravity field and compute their adiabatic mode eigenfrequencies and corresponding Lindblad and vertical resonances in Saturn's C ring, where more than twenty waves with pattern speeds faster than the ring mean motion have been detected and characterized using high-resolution Cassini Visual and Infrared Mapping Spectrometer (VIMS) stellar occultation data. We present identifications of the fundamental modes of Saturn that appear to be the origin of these observed ring waves, and use their observed pattern speeds and azimuthal wavenumbers to estimate the bulk rotation period of Saturn's interior to be 10h33m38s1m19s+1m52s10{\rm h}\, 33{\rm m}\, 38{\rm s}^{+1{\rm m}\, 52{\rm s}}_{-1{\rm m}\, 19{\rm s}} (median and 5%/95% quantiles), significantly faster than Voyager and Cassini measurements of periods in Saturn's kilometric radiation, the traditional proxy for Saturn's bulk rotation period. The global fit does not exhibit any clear systematics indicating strong differential rotation in Saturn's outer envelope.Comment: 19 pages, 6 figures, 3 tables, accepted to ApJ; a bug fix improves the fit, predicts faster bulk spin periods (Figure 4) and virtually eliminates evidence for strong radial differential rotation (Figure 5

    A new method for constructing small-bias spaces from Hermitian codes

    Full text link
    We propose a new method for constructing small-bias spaces through a combination of Hermitian codes. For a class of parameters our multisets are much faster to construct than what can be achieved by use of the traditional algebraic geometric code construction. So, if speed is important, our construction is competitive with all other known constructions in that region. And if speed is not a matter of interest the small-bias spaces of the present paper still perform better than the ones related to norm-trace codes reported in [12]

    Nonlinear spectral calculus and super-expanders

    Get PDF
    Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Cesaro averages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.Comment: Typos fixed based on referee comments. Some of the results of this paper were announced in arXiv:0910.2041. The corresponding parts of arXiv:0910.2041 are subsumed by the current pape

    Pseudorandomness for Regular Branching Programs via Fourier Analysis

    Full text link
    We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2n)O(\log^2 n), where nn is the length of the branching program. The previous best seed length known for this model was n1/2+o(1)n^{1/2+o(1)}, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s1/2+o(1)s^{1/2+o(1)} for arbitrary branching programs of size ss). Our techniques also give seed length n1/2+o(1)n^{1/2+o(1)} for general oblivious, read-once branching programs of width 2no(1)2^{n^{o(1)}}, which is incomparable to the results of Impagliazzo et al.Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In particular, we show that an oblivious, read-once, regular branching program of width ww has Fourier mass at most (2w2)k(2w^2)^k at level kk, independent of the length of the program.Comment: RANDOM 201

    Distributed Computing in the Asynchronous LOCAL model

    Full text link
    The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task TT associated to a locally checkable labeling (LCL), if TT is solvable in tt rounds in the LOCAL model, then TT remains solvable in O(t)O(t) rounds in the asynchronous LOCAL model. This improves the result by Casta\~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free

    Limitations to Frechet's Metric Embedding Method

    Full text link
    Frechet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Frechet embedding is Bourgain's embedding. The authors have recently shown that for every e>0 any n-point metric space contains a subset of size at least n^(1-e) which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is non-Frechet, and the purpose of this note is to show that this is not coincidental. Specifically, for every e>0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Frechet embedding into l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur

    Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates

    Full text link
    In this paper, we provide a novel construction of the linear-sized spectral sparsifiers of Batson, Spielman and Srivastava [BSS14]. While previous constructions required Ω(n4)\Omega(n^4) running time [BSS14, Zou12], our sparsification routine can be implemented in almost-quadratic running time O(n2+ε)O(n^{2+\varepsilon}). The fundamental conceptual novelty of our work is the leveraging of a strong connection between sparsification and a regret minimization problem over density matrices. This connection was known to provide an interpretation of the randomized sparsifiers of Spielman and Srivastava [SS11] via the application of matrix multiplicative weight updates (MWU) [CHS11, Vis14]. In this paper, we explain how matrix MWU naturally arises as an instance of the Follow-the-Regularized-Leader framework and generalize this approach to yield a larger class of updates. This new class allows us to accelerate the construction of linear-sized spectral sparsifiers, and give novel insights on the motivation behind Batson, Spielman and Srivastava [BSS14]

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP
    corecore